반응형

분류 전체보기 129

[수학Ⅱ]9.도함수의 정의

『내가 이만큼 변하면 너는 얼만큼 변할거야?』 이번 시간은 도함수(derivative)에 대해 알아보도록 하겠습니다.왜 도(導)함수일까?  영어로 derivative는 파생이라는 뜻을 나타내면서 도함수를 나타냅니다.도함수는 원래의 함수에서 파생되었다는 뜻을 가지고 있죠.  처음 derivative를 한자로 바꾸기 위해 인도할 도(導)라는 한자를 채택하였습니다.지극히 개인적인 생각이지만 함수를 나타낼 때 무수히 많은 점들을 이어서 나타냅니다.그럼 이 무수히 많은 점들이 다음 점을 이을 방향을 나타내기 위해서는앞서 배운 순간변화율의 개념이 필요한데 이것이 함수를 인도하는 의미가 아닌가라고 생각해도(導)함수를 나타낸 것이라 생각합니다.  그럼 도함수의 정의부터 보도록 하겠습니다!도함수의 정의도함수의 증분도함수..

[수학Ⅱ]8.평균변화율과 순간변화율(미분계수)의 정의

『내가 이만큼 변하면 너는 얼만큼 변할거야?』 드디어 미분과 적분이라는 파트에 들어왔습니다.앞서 공부한 함수의 극한과 연속성에서 다룬 개념을 가지고미분과 적분에 대해 공부할 예정입니다.  미분에 들어가기 앞서 우리는 변화율에 대해 이야기 해보겠습니다.변화율에는 크게 평균변화율과 순간변화율 두 가지가 있습니다.  학교 시험의 평균이라고 하면 모든 점수를 더해 학생수로 나눈 값입니다.즉 평균이라는 개념은 평평하고 균일한 뜻이 함축되어 있습니다.따라서 평균변화율이라 하면 일정하게 변화하였을 때 얼만큼 변하는지 나타내는 것입니다. 순간변화율은 말 그대로 어느 순간 변화하였을 때 얼만큼 변하는지를 나타내는 것입니다.그럼 구체적으로 무슨 뜻인지 살펴보도록 하겠습니다. 그 전에 중요한 건 수학2에서 다루는 함수는 모..

[수학Ⅱ]2.함수의 극한과 연속 심화문제

『함수의 극한과 연속』 함수의 극한과 연속 심화문제입니다.심화문제 모두 본수학(수학Ⅱ)에서 발췌된 문제입니다.  심화문제1심화문제1 \(a, b, c, p\)를 실수라 하자. 다음의 부등식을 모두 만족하는 실수 \(x\)의 집합과 \(x>p\)를 만족하는 실수 \(x\)의 집합이 일치한다고 하자. $$ax^2+bx+c>0$$ $$bx^2+cx+a>0$$ $$cx^2+ax+b>0$$  (1) \(a, b, c\)는 모두 0이상인 것을 보여라. (2) \(a, b, c\)중 적어도 1개는 0인 것을 보여라. (3) \(p=0\)인 것을 보여라. 정답 및 풀이 확인하러 가기    최상위권 학생들을 위한 본고사 문제 제작소본수학 네이버 카페 cafe.naver.com/bornmath본수학 네이버 블로그 blo..

[수학Ⅱ]1.함수의 극한과 연속 연습문제

『함수의 극한과 연속』 함수의 극한과 연속 연습문제입니다.연습문제 모두 본수학(수학Ⅱ)에서 발췌된 문제입니다.  연습문제1연습문제2연습문제1 \(f(x) = \displaystyle{\lim_{n \rightarrow \infty}\cfrac{x^{2n+1}+ax^{2}+bx+1}{x^{2n}+1}}\)이라 하자. \(f(x)\)가 모든 실수 \(x\)에 대해 연속이 되도록 하는 \(a, b\)의 값을 구하여라. 정답 및 풀이 확인하러 가기  연습문제2 \(f(x) = \displaystyle{\lim_{n \rightarrow \infty}\cfrac{ax^{2n-1}-x^{2}+bx+c}{x^{2n}+1}}\)에 대해 다음의 물음에 답하여라. 단 \(a, b, c\)는 상수이며 \(a>0\)이라 하..

[수학Ⅱ]7.중간값 정리

『연속함수의 중요한 성질』 지난 시간에 연속함수의 중요한 성질인최댓값과 최솟값의 정리에 대해 알아봤습니다!  오늘은 최댓값과 최솟값의 정리의 응용버전인중간값의 정리에 대해 알아보도록 하겠습니다.  중간값의 정리도 마찬가지로 폐구간에서 연속함수인 경우에만 성립하는 정리입니다.그럼 중간값의 정리와 그에 대한 응용도 배워보도록 하겠습니다.중간값의 정리중간값의 정리와 그래프의 교점중간값의 정리와 방정식의 실수해의 존재연습문제함수의 연속성은 정말 중요한 함수의 성질입니다.대학과정에서는 심화된 연속함수의 성질을 배울 수 있습니다.고등교과과정에서는 연속함수의 마지막 성질인중간값의 정리를 끝으로 연속함수의 특징을 마무리 짓겠습니다. 중간값의 정리   함수 \(f(x)\)가 폐구간 \([a, b]\)에서 연속이고 \(f..

[수학Ⅱ]6.최댓값과 최솟값의 정리

『연속함수의 중요한 성질』 앞서 함수의 연속이라는 개념에 대해 알아봤습니다.함수가 연속한다는 것은 함수의 성질 중에 대단히 중요한 개념인데요.  그런 연속함수 중에 중요한 정리중 하나인최댓값과 최솟값의 원리에 대해 알아보도록 하겠습니다.  그 전에 이제부터 특정 구간에 대해 정의된 함수를 다룰 예정이므로여러가지 구간에 대해 알아보도록 하겠습니다.본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기 개구간과 폐구간여러가지 구간최댓값과 최솟값의 정리연습문제정의역은 함수가 정의된 곳인데요.이 정의역을 일반적인 실수가 아닌 특정 구간에서만 다룰 수 있겠죠?  구간이 정해지면 함수를 다루기 훨씬 쉬워질 수 있어요!구간이란 부등식을 만족하는 값의 범위..

[수학Ⅱ]5.함수의 연속과 성질

『함수의 연속은 한붓그리기』 어렸을 때 우리 모두 한붓그리기를 해 본 기억이 있습니다.연필이나 팬을 가지고 한 번에 도형을 그리는 것이였죠. 함수의 연속도 일종의 한붓그리기라 생각하면 될 것 같습니다!어느 구간 사이에 연속이라 하면 구간의 처음부터 끝까지끊어지지 않게 그릴 수 있어야 합니다.  실은 연속이라는 개념은 대학교 과정에 가면 여러가지가 있지만고등학교 과정에서는 이 정도로 이해하면 될 것 같습니다!  그럼 함수의 연속에 대해 자세히 알아보도록 하겠습니다!본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기 함수의 연속과 불연속함수의 사칙연산과 연속연속함수연습문제함수의 연속과 불연속 함수의 연속   함수 \(f(x)\)의 정의역에 속..

[수학Ⅱ]4.샌드위치 정리

『빵 사이에 낀 햄』햄버거는 빵과 빵 사이에 패티, 야채, 치즈 등 다양한 재료가 들어있습니다.햄버거의 위의 빵과 아래 빵을 동시에 먹으면자연스레 빵과 빵 사이에 있는 패티, 야채, 치즈등도 같이 먹을 수 있겠죠?  이와 같이 함수 사이에 끼어 버린 함수의 극한값을 구하는 방법을 샌드위치 정리라 합니다.위의 빵과 아래 빵이 있는 것처럼 샌드위치 정리에 들어가기 전에 함수의 대소관계를 먼저 볼까요?함수의 극한과 대소관계함수의 샌드위치 정리분수함수의 극한이 수렴하기 위한 필요조건 연습문제여기 \(f(x)\)와 \(g(x)\)함수가 있다고 생각해봅시다.함수 \(f(x)\)가 \(g(x)\)보다 크다는 것은 어떠한 \(x\)를 대입했을 때\(f(x) > g(x)\)가 성립해야 한다는 것을 뜻합니다.그러면 극한값..

[수학Ⅱ]3.함수의 극한의 성질

『무한대 더하기 무한대?』 무한대는 엄청 큰 상태를 뜻합니다.그럼 무한대에도 사칙연산이 존재할까요?  이번 시간에서는 무한대의 사칙연산이라기 보다는함수의 사칙연산에서 극한을 보낸 것이라 생각하면 됩니다.  그럼 함수의 극한에는 어떠한 성질이 있는지 한 번 보도록 하겠습니다!본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기 함수의 극한의 성질양의 발산과 수렴이 있는 함수의 극한의 성질양의 발산이 있는 함수의 극한의 성질연습문제 함수의 극한의 성질 제곱근 함수 \(f(x)\), \(g(x)\)가 수렴하고 \(\displaystyle{\lim_{x\rightarrow a}}f(x)=\alpha\), \(\displaystyle{\lim_{x..

[수학Ⅱ]2.극한과 극한값

『극한값이 존재한다!』 지난시간에 극한값에 대해 알아봤습니다.마지막 설명에 극한값이 존재할 때를 봤는데이번 시간에 극한값이 존재하지 않을 경우에 대해 알아보도록 하겠습니다!본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기 한 쪽으로부터의 극한한 쪽으로부터의 극한과 극한값무한대와 함수의 극한연습문제 한 쪽으로부터의 극한 함수 \(f(x)\)에 대해 다음과 같이 정의한다. (1) \(x\)가 \(a\)보다 큰 값 \((a (2) \(x\)가 \(a\)보다 작은 값 \((x 한 쪽으로부터의 극한과 극한값 \(\displaystyle{\lim_{x\rightarrow a}}f(x)=\alpha \)라는 것은 \(\displaystyle{\lim..