반응형

점화식 4

[수학Ⅰ]6.수열 심화문제

『지수와 로그 심화문제』 수열 심화문제입니다.심화문제 모두 본수학(수학Ⅰ)에서 발췌된 문제입니다.본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기 심화문제1심화문제2 심화문제1 다음 물음에 답하여라. (1) \(n\)을 양의 정수라 하고 \(3^{n}\)을 10으로 나누었을 때 나머지를 \(a_n\)이라 하자. \(a_n\)을 구하여라. (2) \(n\)을 양의 정수라 하고 \(3^n\)을 4로 나누었을 때 나머지를 \(b_n\)이라 하자. \(b_n\)을 구하여라. (3) 수열 \(\{x_n\}\)을 다음과 같이 정하자. $$ x_1=1 $$ $$x_{n+1}=3^{x_n}$$ \(x_{10}\)을 10으로 나누었을 때 나머지를 구하여..

[수학Ⅰ]21.다양한 점화식2

『다양한 종류의 점화식들』 지난 포스트에 이어 다양한 점화식들에 대해 살펴보겠습니다!오늘 다룰 점화식 중에 연립 점화식들도 포함되어 있습니다.  연립이라는 말은 많이 들어보셨지요?연립주택, 연립방정식 등등 한자 그대로 연달아 서있는 것을 뜻하는데두 개 이상의 점화식이 있는 것을 연립점화식이라 합니다!  그럼 연립점화식은 어떤 종류가 있으며 어떻게 일반항을 구하는지 살펴보겠습니다!본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기 점화식 \(a_{n+2}+pa_{n+1}+qa_{n}=0\)연립점화식대칭성이 있는 연립점화식연습문제우선 연립점화식에 들어가기 전에연속한 3개의 항으로 이루어진 점화식을 먼저 보겠습니다.  이전 포스트에는 2개의 항..

[수학Ⅰ]20.다양한 점화식

『다양한 종류의 점화식들』 등차수열과 등비수열의 점화식은 간단한 점화식에 속합니다.점화식을 풀 때 진짜 어려운 점화식은 대학과정에서도 어렵다고 할 정도의 점화식이 있죠. 하지만 고등교육과정에서는 그 정도까지는 아니지만 다양한 점화식의 해법을 배웁니다.오늘은 그 중에 몇 개를 소개하려 합니다!본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기 점화식\(a_{n+1}=a_{n}+q\)점화식\(a_{n+1}=pa_{n}+\)(\(n\)의 1차식)점화식\(a_{n+1}=f(n)a_{n}\)연습문제점화식은 항과 항사이의 관계를 나타낸 식이다. 점화식\(a_{n+1}=pa_{n}+q\) 수열\(\{a_n\}\)의 점화식 \(a_1=a, a_{n+1}..

[수학Ⅰ]19.점화식의 정의

『수열에서 항과 항사이를 나타내는 관계식이 있을까?』 수열을 나타낼 때는 임의의 \(n\)번째 수를 나타내기 위해 일반항으로 표현합니다.그럼 일반항을 나타내기 전에 항과 항사이에는 어떤 관계식이 있을까요?  이 관계식으로부터 일반항을 구할 수 있을까요?오늘은 점화식의 정의와 등차수열과 등비수열의 점화식에 대해 알아보도록 하겠습니다!본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기 점화식등차수열과 점화식등비수열과 점화식연습문제점화식은 항과 항사이의 관계를 나타낸 식이다. 점화식 수열에 대해 이전의 항부터 다음의 항까지 단 하나의 방법으로 정해지는 규칙을 나타낸 등식을 점화식이라 한다. 점화식을 만족하는 수열의 일반항을 점화식의 해라고 한다..