반응형

적분공식 2

[수학Ⅱ]20.적분공식-포물선과 접선으로 둘러싸인 도형의 면적

『이 공식도 외워두면 편해요!』 지난 시간에 이어 오늘도 필요한 공식을 소개해드리려고 합니다!포물선과 접선으로 둘러싸인 도형의 면적입니다.  이것을 응용하면 두 개의 포물선사이의 공통접선에 대한 면적을 구할 수 있습니다.그리고 3차 이상의 함수에 대해서는 어떻게 되는지 한 번 알아보도록 하겠습니다!본문 읽기 전에 본수학으로 공부한 후기도 읽어주세요! 과학고 수학 내신 1등 후기 보러가기 서울대 합격 후기 보러가기  포물선과 두 접선으로 둘러싸인 도형의 면적같은 형태의 포물선과 공통접선으로 둘러싸인 도형의 면적3차 이상의 함수 그래프와 접선으로 둘러싸인 도형의 면적연습문제다시 한 번 중요한 부분은 수학2에서 다루는 함수는 모두 다항함수라는 점입니다! 다항함수는 함수의 중요한 특징을 갖고 있기 때문입니다! ..

[수학Ⅱ]17.적분공식

『이거 외워두면 진짜 편해요!』 수험생들이 외워야 할 몇 가지 필수 공식이 있습니다!오늘 소개할 공식들은 필수적이지는 않지만알아두면 1분1초를 다투는 시험에큰 도움이 되는 적분공식입니다! 우함수의 정적분기함수의 정적분적분공식연습문제다시 한 번 중요한 부분은 수학2에서 다루는 함수는 모두 다항함수라는 점입니다! 다항함수는 함수의 중요한 특징을 갖고 있기 때문입니다!  우함수의 정적분 \(f(x)\)가 우함수일 때 \(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\) 특히 \(m\)을 \(0\)이상의 정수라 할 때 다음이 성립한다. $$\int_{-a}^{a}x^{2m}dx=2\int_{0}^{a}x^{2m}dx$$  우함수는 \(y\)축에 대칭이므로 \(0\)부터 한쪽가지만의 적분..